FIRE Level 2
Entry Title: First ISCCP Regional Experiment (FIRE) Cirrus Phase II Spectral Radiance Experiment (SPECTRE) SIRIS High Resolution Emission Data
Entry ID: FIRE_CI2_SPECT_SIRIS_1
Radiation Budget
Description
The First ISCCP Regional Experiments have been designed to improve data products and cloud/radiation parameterizations used in general circulation models (GCMs). Specifically, the goals of FIRE are (1) to seek the basic understanding of the interaction of physical processes in determining life cycles of cirrus and marine stratocumulus systems and the radiative properties of these clouds during their life cycles and (2) to investigate the interrelationships between ISCCP data, GCM parameterizations, and higher space and time resolution cloud data. To-date, four intensive field-observation periods were planned and executed: a cirrus IFO (October 13 - November 2, 1986); a marine stratocumulus IFO off the southwestern coast of California (June 29 - July 20, 1987); a second cirrus IFO in southeastern Kansas (November 13 - December 7, 1991); and a second marine stratocumulus IFO in the eastern North Atlantic Ocean (June 1 - June 28, 1992). Each mission combined coordinated satellite, airborne, and surface observations with modeling studies to investigate the cloud properties and physical processes of the cloud systems.SPECTRE/SIRIS high spectral resolution observations were obtained at Coffeyville, Kansas in November - December 1991. The SIRIS instrument has been previously flown for balloon-borne studies of stratospheric chemistry relevant to the ozone cycles. It is a modified version of a Bomem continuously scanning Fourier transform spectrometer, operating in emission mode. The following instrument parameters were applicable for the Coffeyville SPECTRE campaign. The field-of-view, 0.5 degrees full width at half-maximum, was directed towards the zenith, except for a day when limb were recorded. The highest emission-mode spectral resolution recorded during SPECTRE was taken by SIRIS 0.06 cm-1, apodized. Scan times varied from one to a few minutes, depending onthe resolution. The instrument was run at ambient temperature, withthe Si:Ga detectors at liquid helium (LHe) temperature. Data are limited by photon noise from the emission from the instrument and from the atmosphere itself. Therefore data were recorded with two different width bandpasses: 1) narrow bandpass cooled filters in channels 1-4, which reduces the background noise, yielding higher signal-to-noise; and 2) wide band in channel 5 for more complete spectral coverage.It was the goal of SPECTRE to acquire clear-sky radiance spectra under a variety of temperature and water vapor conditions.
Resources and Documentation
DOWNLOAD SOFTWARE
FIRE II-Cirrus Read Software Package - Direct File Download (.tar)
FIRE I-Cirrus Read Software Package - Direct File Download (.tar)
FIRE I-Extended-Time-Observation Read Software Package - Direct File Download (.tar)
FIRE II-ASTEX Read Software Package - Direct File Download (.tar)
FIRE III Read Software Package - Direct File Download (.tar)
VIEW RELATED INFORMATION
- How to cite ASDC data
DATA CITATION POLICY
- ASDC Data and Information for FIRE
- FIRE Cirrus 2 Spectral Radiance Experiment (SPECTRE) SIRIS High Resolution Emission Langley DAAC Data Set Document
GENERAL DOCUMENTATION
- Project/Campaign Document: Project/Campaign Document: FIRE Langley DAAC
PRODUCTION HISTORY
Keywords
From GCMD Science Keywords:
- SOLAR RADIATION
- Clear-Sky Radiance Spectra
- Interferometer
- Radiance
Data Distribution
File Format(s):
Native
Note: "Get Dataset" is a link to our recommended order method. The down arrow will show you additional options.
Spatial Information
Spatial Coverage Type: Horizontal Vertical
Coordinate System: Cartesian
Granule Spatial Representation: Cartesian
Locations
NORTH AMERICA MID-LATITUDE KANSAS CONTINENT UNITED STATES OF AMERICA
Temporal Information
Temporal Coverage: 1991-11-25 - 1991-12-07